Übungsblatt 1:

Aufgabe 1: Zeeman Interaction

Alle für die Lösung der Aufgabe nötigen Gleichungen sind im folgenden gegeben, alle Konstanten stehen unten auf dem Übungsblatt:

$$E_{m_S} = -\hbar \cdot \gamma_e \cdot m_S \cdot B_0 \tag{1}$$

$$E_{Mikrowelle} = h \cdot \nu = \hbar \cdot \omega \tag{2}$$

$$\nu = c/\lambda \tag{3}$$

Hierbei ist E_{m_S} die Energie für die magnetische Spinquantenzahl m_S . \hbar ist das reduzierte Planksche Wirkungsquantum $(2\pi\hbar=h)$, B_0 ist das angelegte Magnetische Feld und ν bzw. ω sind Frequenz und Kreisfrequenz der Elektromagnetischen Strahlung.

i) Frequenzbanden:

In der folgenden Tabelle sind die typischen Frequenzbänder der EPR gezeigt. Bestimmen sie die korrespondierenden Wellenlängen und das Magnetfeld am J-Band. Nehmen sie zur Bestimmung der Magnetfelder

Tabelle 1: Frequenzbanden der EPR.

Frequenzband:	X	Q	W	G	J
Frequenz / GHz	9.5	33	95	180	263
Wellenlänge / mm					
Magnetfeld / T	0.34	1.2	3.4	6.42	

ii):

Bestimmen Sie die Frequenz der Elektromagnetischen Strahlung, die Nötig ist um einen Energieübergang zwischen den beiden Spinzuständen für einen Spin von S=1/2 im Erdmagnetfeld (Mitteleuropa ca. 48 μT) zu induzieren.

Aufgabe 2: Besetzungsunterschiede

Bestimmen Sie das Besetzungsverhältnis der zwei Energiezustände eines Elektrons bei einem Magnetfeld von 9.38 T und im Erdmagnetfeld von 48 μT . Bestimmen Sie ebenso das Besetzungsverhältnis für einen 1H Wasserstoffkern bei 9.38 T.

Bestimmen Sie alle Besetzungsverhältnisse bei 300 K und bei 5 K. Das Besetzungsverhältnis nach Boltzmann ist dabei durch folgende Gleichung gegeben.

$$\frac{p_2}{p_1} = e^{-(E_2 - E_1)/k_B T} \tag{4}$$

Konstanten:

 $h=6.626\cdot 10^{-34}J\cdot s;~\gamma_e=2.675222\cdot 10^8 rad\cdot s^-1\cdot T^-1;~\gamma_{1H}=1.760860\cdot 10^{11} rad\cdot s^-1\cdot T^-1;~\lambda=299~792~458~m/s;~k_B=1.3806\cdot 10^{-23}$